
Alltrax AXE Motor Controller Serial Port Communication

The Alltrax AXE has a serial port that can be used to program the device and read real time data. This file is
concerned with reading real time data only. Writing program and/or EEPROM could easily cause problems with
the controller, motor, batteries, etc. This is information I have found and verified by testing on an AXE controller.
I have not verified this information with Alltrax. Therefor, use at your own risk, and do not hold Alltrax or myself
responsible for any damage done by using this information.

Note that the AXE may send out some bogus data on power up. Good practice would be to clear the host input
buffer before sending a command.

Serial Port Parameters:

The AXE is set to 9600 baud, 8 data bits, 1 stop bit, no parity. No Handshaking.

Data Coding:

Byte values (not ASCII) are used. All 8 bits are required.

Protocol:

A command string is sent from the host. The AXE responds with a reply.

Packet Format:

A packet consists of seven bytes; all seven must be transmitted.

byte function
----- -----------
0 source/target addresses the high order hex digit is the source, low order

is the target. Host is hex 5, AXE is hex B
1 command the command byte (see below)
2 address RAM address to start reading from
3-5 data don't cares in command (but value will affect the

checksum), RAM data in reply
6 checksum overflowed checksum (sum of all 7 bytes = 0x00

when truncated to one byte)

Commands:

Again, this file only deals with command 0x04, the others are shown for reference.

0x00 - read byte from program memory
0x01 - write byte to program memory
0x02 - read byte from EEPROM
0x03 - write byte to EEPROM
0x04 - Read three sequential bytes from RAM starting at the requested address
0x05 - Reset the AXE program and start up again

Addresses:

Most data is encoded into two bytes (low order byte first)

The following data is available:

adr value
--- ----------
0x20 throttle position - one byte Value is 0 to 255 = 0% to 100%
0x2C controller temperature - two bytes Value is in degrees K 2.048 bits/deg
0x39 battery voltage - two bytes Value is Volts 0.1025V per bit
0x3B Error status - one byte (***I need to fill in the bit values here)
0x60 Motor Current - two bytes Value is Amps

Examples:

To read battery voltage, send:

0x5B 0x04 0x39 0x00 0x00 0x00 0x68

Where:
0x5B means we are sending from the Host (hex 5) to the AXE (hex B)
0x04 is the read command
0x39 is the start address of the battery voltage data
0x00 three bytes of don't care data
0x00
0x00
0x68 checksum of the previous six bytes :

0x5B + 0x04 + 0x39 + 0x00 + 0x00 + 0x00 = 0x98
0x98 XOR 0xFF = 0x67
0x67 + 1 = 0x68

The reply is:

0xB5 0x04 0x39 0x66 0x01 0x00 0xA7

Where:
0xB5 sending from AXE (hex B) to Host (hex 5)
0x04 reply for read command
0x39 starting at address 0x39
0x0166 the battery voltage = 358 decimal * 0.1025V/bit = 36.7 Volts
0x00 third byte, not needed (is actually the Error byte here)
0xA7 checksum calculated as above

To read temperature, send:

0x5B 0x04 0x2C 0x00 0x00 0x00 0x75

The reply is:

0xB5 0x04 0x2C 0x4A 0x02 0x00 0xCF

Where:
data is 0x024a = 586 decimal / 2.048 bits/deg = 286 deg K - 273 = 13 deg C

